
Week 9 - Monday

 What did we talk about last time?
 Linked lists

C combines the power and performance of assembly
language with the flexibility and ease-of-use of assembly
language.

Anonymous

 Node consists of data and a single next pointer
 Advantages: fast and easy to implement
 Disadvantages: forward movement only

X

head

23 47 58

 We'll use this definition for our node for singly linked lists

 Somewhere, we will have the following variable to hold the beginning of
the list

typedef struct _node
{

int data;
struct _node* next;

} node;

node* head = NULL;

 Let's write a method that will remove all the nodes from a
singly linked list
 Don't forget to free all the nodes!

 With this implementation, the user will have to set head to
NULL manually

void empty(node* head);

 Let's define a function that takes a pointer to a (possibly
empty) linked list and adds a value in sorted order (assuming
that the list is already sorted)

 There are two possible ways to do it
 Return the new head of the list

 Take a pointer to a pointer and change it directly

node* add(node* head, int value);

void add(node** headPointer, int value);

 There are situations where you'd like to have a set of named
constants

 In many cases, you'd like those constants to be different from
each other

 What if there were a way to create such a list of constants
easily?

 Enter enum!

 To create these constants, type enum and then the names of your
constants in braces

 Then in your code, you can use these values (which are stored as
integers)

enum { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY };

int day = FRIDAY;
if (day == SUNDAY)

printf ("My 'I don't have to run' day\n");

 You can also create named enum types

 Then you can declare variables of these types

 Naturally, because they are constants, it is traditional to name
enum values in ALL CAPS

enum Color { BLACK, BLUE, GREEN, ORANGE, PURPLE, RED, WHITE,
YELLOW };

enum Color color;
color = YELLOW;

 If you want to declare enum types (and there isn't much
reason to, since C treats them exactly like int values), you
can use typedef to avoid typing enum all the time

typedef enum { C, C_PLUS_PLUS, C_SHARP, JAVA, JAVASCSRIPT,
LISP, ML, OBJECTIVE_C, PERL, PHP, PYTHON, RUBY, VISUAL_BASIC }
Language;

Language language1 = C;
Language language2 = JAVA;

 enum values by default start at 0 and increase by one with each new constant

 In this case, the constants have the following numbering
 SUNDAY: 0
 MONDAY : 1
 TUESDAY : 2
 WEDNESDAY : 3
 THURSDAY : 4
 FRIDAY : 5
 SATURDAY : 6

enum { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY };

 You can even specify the values in the enum

 If you assign values, it is possible to make two or more of the constants have
the same value (usually bad)

 A common reason that values are assigned is so that you can do bitwise
combinations of values

enum { ANIMAL = 7, MINERAL = 9, VEGETABLE = 11 };

enum { PEPPERONI = 1, SAUSAGE = 2, BACON = 4, MUSHROOMS = 8,
PEPPER = 16, ONIONS = 32, OLIVES = 64, EXTRA_CHEESE = 128 };

int toppings = PEPPERONI | ONIONS | MUSHROOMS;

 Before C90, there was no bool type
 Then, a common uses of enum was to specify a Boolean type

 It's not a perfect system, since you can assign values other
than 0 and 1 to a BOOLEAN

 Likewise, other values are also true in C

typedef enum { FALSE, TRUE } BOOLEAN;

BOOLEAN value = TRUE;
BOOLEAN flag = FALSE;

 The next topics we'll discuss today are primarily about saving
space

 They don't make code safer, easier to read, or more time
efficient

 At C's inception, memory was scarce and expensive
 These days, memory is plentiful and cheap

 The smallest addressable chunk of memory in C is a byte
 Stored in a char

 If you want to record several individual bit values, what do you
do?

 You can use bitwise operations (&, |, <<, >>, ~) to manipulate
bits
 But it's tedious!

 You can define a struct and define how many bits wide each element is
 It only works for integral types, and it makes the most sense for unsigned int
 Give the number of bits it uses after a colon
 The bits can't be larger than the size the type would normally have
 You can have unnamed fields for padding purposes

typedef struct _toppings
{

unsigned pepperoni : 1;
unsigned sausage : 1;
unsigned onions : 1;
unsigned peppers : 1;
unsigned mushrooms : 1;
unsigned sauce : 1;
unsigned cheese : 2; //goes from no cheese to triple cheese

} toppings;

 You could specify a pizza this way

toppings choices;
memset(&choices, 0, sizeof(toppings));
//sets the garbage to all zeroes
choices.pepperoni = 1;
choices.onions = 1;
choices.sauce = 1;
choices.cheese = 2; //double cheese
order(&choices);

 Structs are always padded out to multiples of 4 or even 8
bytes, depending on architecture
 Unless you use compiler specific statements to change byte packing

 After the last bit field, there will be empty space up to the
nearest 4 byte boundary

 You can mix bit field members and non-bit field members in a
struct
 Whenever you switch, it will pad out to 4 bytes
 You can also have 0 bit fields which also pad out to 4 bytes

Data Bits

light
toaster

padding

1
1
30

count 32

outlets
unnamed
clock

unnamed
padding

4
4
1
0
23

flag
padding

1
31

struct kitchen
{

unsigned light : 1;
unsigned toaster : 1;
int count; // 4 bytes
unsigned outlets : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : 0;
unsigned flag : 1;

};

16
bytes

 Finish bit fields
 Unions
 Trees
 Users and time

 Finish Project 4
 Due Friday by midnight!

 Keep reading K&R chapter 6
 Read LPI chapters 8 and 10
 Exam 2 is next Monday

	COMP 2400
	Last time
	Questions?
	Project 4
	Quotes
	Linked lists
	Singly linked list
	An example node struct
	Empty
	Insert in sorted order
	Enums
	enum
	Using enum
	Creating enum types
	typedef + enum
	enum values
	Specifying values
	A classic enum
	Bit Fields
	Saving space
	What if you wanted to record bits?
	Bit fields in a struct
	Code example
	Struct size and padding
	Padding example
	Upcoming
	Next time…
	Reminders

