
Week 9 - Monday

 What did we talk about last time?
 Linked lists

C combines the power and performance of assembly
language with the flexibility and ease-of-use of assembly
language.

Anonymous

 Node consists of data and a single next pointer
 Advantages: fast and easy to implement
 Disadvantages: forward movement only

X

head

23 47 58

 We'll use this definition for our node for singly linked lists

 Somewhere, we will have the following variable to hold the beginning of
the list

typedef struct _node
{

int data;
struct _node* next;

} node;

node* head = NULL;

 Let's write a method that will remove all the nodes from a
singly linked list
 Don't forget to free all the nodes!

 With this implementation, the user will have to set head to
NULL manually

void empty(node* head);

 Let's define a function that takes a pointer to a (possibly
empty) linked list and adds a value in sorted order (assuming
that the list is already sorted)

 There are two possible ways to do it
 Return the new head of the list

 Take a pointer to a pointer and change it directly

node* add(node* head, int value);

void add(node** headPointer, int value);

 There are situations where you'd like to have a set of named
constants

 In many cases, you'd like those constants to be different from
each other

 What if there were a way to create such a list of constants
easily?

 Enter enum!

 To create these constants, type enum and then the names of your
constants in braces

 Then in your code, you can use these values (which are stored as
integers)

enum { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY };

int day = FRIDAY;
if (day == SUNDAY)

printf ("My 'I don't have to run' day\n");

 You can also create named enum types

 Then you can declare variables of these types

 Naturally, because they are constants, it is traditional to name
enum values in ALL CAPS

enum Color { BLACK, BLUE, GREEN, ORANGE, PURPLE, RED, WHITE,
YELLOW };

enum Color color;
color = YELLOW;

 If you want to declare enum types (and there isn't much
reason to, since C treats them exactly like int values), you
can use typedef to avoid typing enum all the time

typedef enum { C, C_PLUS_PLUS, C_SHARP, JAVA, JAVASCSRIPT,
LISP, ML, OBJECTIVE_C, PERL, PHP, PYTHON, RUBY, VISUAL_BASIC }
Language;

Language language1 = C;
Language language2 = JAVA;

 enum values by default start at 0 and increase by one with each new constant

 In this case, the constants have the following numbering
 SUNDAY: 0
 MONDAY : 1
 TUESDAY : 2
 WEDNESDAY : 3
 THURSDAY : 4
 FRIDAY : 5
 SATURDAY : 6

enum { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY };

 You can even specify the values in the enum

 If you assign values, it is possible to make two or more of the constants have
the same value (usually bad)

 A common reason that values are assigned is so that you can do bitwise
combinations of values

enum { ANIMAL = 7, MINERAL = 9, VEGETABLE = 11 };

enum { PEPPERONI = 1, SAUSAGE = 2, BACON = 4, MUSHROOMS = 8,
PEPPER = 16, ONIONS = 32, OLIVES = 64, EXTRA_CHEESE = 128 };

int toppings = PEPPERONI | ONIONS | MUSHROOMS;

 Before C90, there was no bool type
 Then, a common uses of enum was to specify a Boolean type

 It's not a perfect system, since you can assign values other
than 0 and 1 to a BOOLEAN

 Likewise, other values are also true in C

typedef enum { FALSE, TRUE } BOOLEAN;

BOOLEAN value = TRUE;
BOOLEAN flag = FALSE;

 The next topics we'll discuss today are primarily about saving
space

 They don't make code safer, easier to read, or more time
efficient

 At C's inception, memory was scarce and expensive
 These days, memory is plentiful and cheap

 The smallest addressable chunk of memory in C is a byte
 Stored in a char

 If you want to record several individual bit values, what do you
do?

 You can use bitwise operations (&, |, <<, >>, ~) to manipulate
bits
 But it's tedious!

 You can define a struct and define how many bits wide each element is
 It only works for integral types, and it makes the most sense for unsigned int
 Give the number of bits it uses after a colon
 The bits can't be larger than the size the type would normally have
 You can have unnamed fields for padding purposes

typedef struct _toppings
{

unsigned pepperoni : 1;
unsigned sausage : 1;
unsigned onions : 1;
unsigned peppers : 1;
unsigned mushrooms : 1;
unsigned sauce : 1;
unsigned cheese : 2; //goes from no cheese to triple cheese

} toppings;

 You could specify a pizza this way

toppings choices;
memset(&choices, 0, sizeof(toppings));
//sets the garbage to all zeroes
choices.pepperoni = 1;
choices.onions = 1;
choices.sauce = 1;
choices.cheese = 2; //double cheese
order(&choices);

 Structs are always padded out to multiples of 4 or even 8
bytes, depending on architecture
 Unless you use compiler specific statements to change byte packing

 After the last bit field, there will be empty space up to the
nearest 4 byte boundary

 You can mix bit field members and non-bit field members in a
struct
 Whenever you switch, it will pad out to 4 bytes
 You can also have 0 bit fields which also pad out to 4 bytes

Data Bits

light
toaster

padding

1
1
30

count 32

outlets
unnamed
clock

unnamed
padding

4
4
1
0
23

flag
padding

1
31

struct kitchen
{

unsigned light : 1;
unsigned toaster : 1;
int count; // 4 bytes
unsigned outlets : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : 0;
unsigned flag : 1;

};

16
bytes

 Finish bit fields
 Unions
 Trees
 Users and time

 Finish Project 4
 Due Friday by midnight!

 Keep reading K&R chapter 6
 Read LPI chapters 8 and 10
 Exam 2 is next Monday

	COMP 2400
	Last time
	Questions?
	Project 4
	Quotes
	Linked lists
	Singly linked list
	An example node struct
	Empty
	Insert in sorted order
	Enums
	enum
	Using enum
	Creating enum types
	typedef + enum
	enum values
	Specifying values
	A classic enum
	Bit Fields
	Saving space
	What if you wanted to record bits?
	Bit fields in a struct
	Code example
	Struct size and padding
	Padding example
	Upcoming
	Next time…
	Reminders

